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In this part the free vibration of undamped 1-DOF linear system is
solved from the dynamics point of view. We will deal with the forces
that affect the vibratory motion of the oscillator. Dynamics analysis of
vibration oscillator leads to the differential equation of motion which

will be solved.

Undamped 1-DOF mass-spring  oscillator  is  characterized  by  mass  weight  m and
spring stiffness k. Everybody knows what the mass weight is.  But what is spring
stiffness? Spring represents elastic discrete 1-DOF element with no mass. Spring is
characterized by stiffness coefficient k. This coefficient is a measure of the resistance
offered by an elastic body to deformation (Fig. 1):

Fig. 1 Spring deformation.

where F is the force applied on the body and Δl is the displacement produced by the
force along the same DOF (the change in length of a stretched spring). Physical unit
for spring stiffness is newton/meter [N/m]. Mentioned equation is correct just for
springs with linear characteristic (linear relationship between force and deformation).
Mechanical properties of materials are nonlinear in general, but deformations of real
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springs and construction materials are usually small, where their force-deformation
dependencies are linear (Fig. 2).

(a)

(b)
Fig. 2 Linear area of mechanical properties: material stress-strain diagram (a), spring
characteristics (b).

Mass equilibrium position determined by spring deformation due to gravitational force
FG of the mass m. This position is conditioned by equilibrium of spring static force Fst

and mass gravitational  force FG  (Fig.  3).  This  spring deformation is  called static
deformation yst.  From definition of  spring stiffness we can calculate spring static
deformation:

where g is Earth’s gravity. Mass starts vibrate when is displaced from equilibrium
position, therefore the mass gravity is not considered further.
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Fig. 3 Static deformation of spring.

During free vibration two forces act on the mass (Fig. 4): spring force Fk and mass
inertia  force Fm.  Value of  spring force is  determined by displacement mass from
equilibrium position:

where y is mass displacement. Value of inertia force is determined by acceleration of
mass:

where a is mass acceleration.

Fig. 4 Forces act on the mass.

Forces Fm and Fk act opposite to each other:
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The final equation is 2nd order homogeneous differential equation of free vibration
motion undamped 1-DOF linear system. From kinematics of vibration we know:

 and 

and then

This is angular frequency ω of free vibration and is called natural angular frequency
ω0. Every vibrating system has one or more natural angular frequencies that it will
vibrate at once it is disturbed. Number of natural frequencies is equal to number of
DOF (continuum system has theoretically  infinity  number of  natural  frequencies).
Natural  angular  frequency  ω0  is  dependent  on  stiffness  k  and  mass  m  of  the
system.Equation of free vibration motion for our undamped 1-DOF linear system can
be rewrite:

This equation of motion describes general vibration motion but every system can be
forced by different initial displacement or velocity. These initial conditions must be
applying to the equation of motion. Let’s consider a vibration system synchronously
forced  by  initial  displacement  y0  and  initial  velocity  v0  (in  time:  t0  =  0  s).
Displacement-time diagram produced by initial displacement is shown in Fig. 5 and is
describe by cosine function:

where B is amplitude of displacement.

Fig. 5 Displacement-time diagram: y1=B.cos(ω0.t).

Displacement-time diagram produced by initial  velocity is  shown in Fig.  6 and is
describe by sine function:

where A is amplitude of displacement.
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Fig. 6 Displacement-time diagram: y2=A.sin(ω0.t).

Final displacement y is then sum of y1 and y2(Fig. 7):

Amplitudes A and B are determined from initial conditions for t0 = 0 s:

Final displacement is then expressed:

This solution can be replaced by sine function:

where amplitude C and phase angle ϕ are:

Fig. 7 Final displacement-time diagram: y=C sin(ω0.t+φ).
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