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In  solving  many  practical  search/optimization  problems  using
evolutionary  algorithms  it  is  often  difficult  to  avoid  the  premature
convergence in search for the global optimum. From that reason parallel
evolutionary  algorithms (PEA)  and Parallel  Genetic  Algorithms (PGA)
with  advantage  can  be  used.  In  this  paper  some selected  fine-  and

coarse-grained PGA architectures are analysed and experimentally compared. Also the
influence of population re-initialization on the parallel genetic algorithm performance
is  analysed.  The  results  are  demonstrated  on  the  minimization  of  selected  test
functions.

Parallel  evolutionary  algorithms  are  able  to  improve  the  performance  of  simple
evolutionary algorithms with a single population. From some point of view they can be
divided into two groups: fine-grained and coarse-grained architectures. This paper is
an extension of a previous project (Sekaj and Perkacz, 2007), where only some types
of coarse-grained PGA’s and their re-initialization have been analysed.

Similarly as in the living nature, evolution is not a time-synchronous process from the
geographical  point  of  view.  The  evolution  is  distributed  into  many  more  or  less
isolated  groups  (subpopulations)  and  individuals,  where  the  transfer  of  genetic
information among these groups has an important influence on the evolution process.
If  the  information  transfer  is  too  rare,  there  is  a  higher  variability  among  the
individual subpopulations. On the other hand, if  the information transfer between
subpopulations is more frequent or more “dense”, properties of representatives of all
subpopulations are more similar. From some time-point the evolution starts stagnating
due to insufficient gene diversity.  A new radical qualitative improvement or even
change to  new quality  can be brought  about  only  by dramatically  environmental
changes or some natural disasters. The same principles are valid also in the parallel
genetic algorithms.

There  are  several  important  factors,  which have influence on the  behaviour  and
performance  of  the  PGA,  e.g.:  migration  structure  between  subpopulations
(architecture of migration interconnections), size of subpopulations and other possible
factors.  Several  authors  have  studied  various  factors  and  their  influence  on  the
behaviour of PGA`s or EA`s. Surveys and island model behaviour analyses are in
(Cantú-Paz,  1995;  Chipperfield  and  Fleming,  1994;  Whitley,  et  al.,  1999),  etc.
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Migrations have been studied in (Cantú-Paz, 2001). The impacts of migration size and
migration intervals were experimentally analysed in (Skolicki and De Jong, 2005).
Various PGA architectures, the influence of heterogeneity of subpopulations and some
re-initialization possibilities are analysed in (Sekaj, 2004).

An  important  GA  and  PGA  characteristic  having  influence  on  the  convergence
properties is the population diversity, which is a measure of gene variance. With its
increase it is possible to escape the algorithm from the current local optimum and
redirect it to better solutions, possibly to the global optimum. Factors that increase
population  diversity  are  the  operators  modifying  the  current  individuals  in  the
population e.g. mutation (mutation rate). However, if using mutation in case of highly
non-smooth  search/optimization  problems  like  (technical  design/optimization
problems)  it  is  sometimes  not  possible  to  avoid  the  premature  convergence.  An
effective means to increase the population diversity (an analogy to natural disasters in
the living nature) is the population re-initialization.

This  paper  deals  with  an  experimental  comparison  of  some  representatives  of
fine/coarse – grained PGA’s and the influence of population re-initialization on their
performance.

Parallel GA architectures

In  our  comparison  2  coarse-grained,  4  fine-grained  PGA’s  and  a  simple  GA are
analysed and experimentally compared. The coarse-grained PGA (C-PGA) type consists
of  9  subpopulations  (nodes),  which are  interconnected with  other  nodes  through
defined migration connections (Fig.1). The migrations are performed by replacing a
randomly selected individual (except of the best one) in the target node by a copy of
the  best  individual  from  the  source  node  (best-random  policy).  The  number  of
individuals in each node is set to 60. The number of all individuals in the entire PGA is
9×60=540.  The  migration  in  the  C-PGA according  to  the  defined  connections  is
realized periodically after 100 generations.

The fine-grained PGA (F-PGA) has the architecture, which is depicted in Fig.2. In this
case each node represents a single individual. There are 540 individuals, which are
located in a 2D grid with 27 rows and 20 columns. Each individual in each generation
is  crossed-over  with  another  neighbour,  which  is  selected  from  all  8  possible
neighbour candidates using stochastic universal sampling selection. The crossover
rate is 0.95. From the two new children a randomly selected one replaces the parent.
Next the mutation, with the mutation rate 0.002 is performed, where the mutated
gene is randomly selected (with uniform distribution) from its entire search space
(global mutation). Additionally another mutation is performed (mutation rate 0.002)
where the new mutated gene is selected randomly from a small  area around the
parent gene (local mutation). The used size of the area has been set to 2% of the
search space size.

In both PGA cases a re-initialization of the population has been performed. In the C-
PGA two types of re-initialization have been used:

Rc1 – the simple case is the periodical re-initialization of all individuals in the specified●
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nodes. This means that in all nodes of the PGA, expect the node 1, in defined
computation periods (after each 100 generations) all individuals are replaced by new
randomly generated ones. Note, that before the re-initialization the best individual from
the entire PGA is inserted into the population of the node 1
Rc2 – in the second method the re-initialization is activated in each node independently.●

The condition for the re-initialization is that a defined number of individuals in this node
are identical, i.e. that for each of the N individuals in the node there exists at least one
other individual, which Euclidean (or absolute) distance is less than a very small number
. In our experiments N was set to 1/3 of the population size and  was set to 0.01 % of

the search space.

In the F-PGA case only one re-initialization type has been considered – Rf, where in
each generation 100 randomly selected individuals are re-initialized (expect the best
individual). The number 100 was set experimentally.

Fig.1 Considered coarse-grained PGA architecture

Fig.2 Considered fine-grained PGA architecture

The genetic algorithm, which is used in each node of the C-PGA and in the SGA is as
follows:

Population initialization (random) and fitness calculation.1.
Selection of 2 best individuals, which are without any change copied into the new2.
population – Pop1. Random selection of a group of 6 individuals, which are copied
without any change into the new population – Pop2. Selection (tournament) of 12
parents – Pop3.
Mutation and crossover of parents – Pop3’.3.
Completion of the new population by unification of the groups Pop1, Pop2 and Pop3’.4.
New population fitness calculation.5.
1.Test of terminating condition, if not fulfilled, then jump to the Step 2.6.

As in the F-PGA two contemporary mutation types have been used. In the global
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mutation the mutated gene has been replaced by a random (real) value from the entire
search space with uniform probability distribution. In the local mutation there are
small random real numbers added to (or subtracted from) the original gene values.
The used size of random additive changes was limited to 2 % of the entire search
space, with a uniform distribution and a zero mean value. The mutation rate for both
mutation types was 0.05. In case of crossover a simple one-point crossover has been
used.

Experiment description and results

In our analysis 7 PGA architectures are considered. In each case the entire population
size is 540 individuals (in all subpopulations of the C-PGA and in the F-PGA). All PGA
types are compared with a single-node GA (SGA). The number of individuals in the
SGA is also 540. The C-PGA uses the migration architecture according Fig.1. The first
considered type do not use re-initialization (in the experiments it is marked C0), next
the version with re-initialization Rc1 (C1) and Rc2 (C2) respectively are considered.
The F-PGA’s  have the architecture  according Fig.2.  The first  type is  without  re-
initialization (F0). The second type is using re-initialization Rf (F1). The third F-PGA
type is creating a group of individuals consisting of new offspring (after mutation and
crossover) and the current population of size N individuals. From all these a new
population of N individuals is selected applying tournament selection. This algorithm
type combines features of the fine-grained PGA with Rf re-initialization with a single
population GA (F2). The last F-PGA case represents a parallel run of F-PGA (with 520
individuals, Rf re-initialization) with a single population GA with population size of 20
individuals. In each generation the copy of the current best individual from the F-PGA
is placed into the single population GA (F3).

The following test functions have been used in the analysis:

f1(x) – “Schwefel function”

(1)

The global minimum is in f(x)=-n.418.9829; xi=420.9687. In our case n=10. Graph of
f1(x1, x2) for the two variable case is in Fig. 3.

Fig.3 f1(x) – Schwefel function
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f2(x) – “Three Holes function”

function  with  3  variables,  which  is  a  sum of  a  quadratic  function,  the  Schwefel
function and 3 Gauss peaks (holes). if i=1,2,3

(2)

otherwise

 (3)

The global minimum is f2(x1,x2,x3)=–1000; x1=x2=x3=0. This function belongs to the
category of “deceptive functions”, for which the search for the global optimum is not
an easy problem, because of “unexpected” position of the global optimum. Graph of
f2(x1, x2) for the two variable case is in Fig. 4.

Fig.4 f2(x) – Three Holes function

f3(x) – “Egg holder function”

(4)

where X={x1,x2,…,x15}. In our case n=15. Graph of f3(x1, x2) for the two variable case
is in Fig. 5.
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Fig.5 f3(x) – Egg holder function

f4(x) – “Langermann function”

(5)

where ci and Ai are vector resp. matrix of constants . In our case m=5 and the global
minimum is f(x)=-1.4. Graph of f4(x1, x2) for the two variable case is in Fig. 6.

Fig.6 f4(x) – Langermann function

f5(x) – “Shekel function”

(6)

where ci and Ai are vector resp. matrix of constants . The global minimum for n=5 (our
case) is in f(x)=-10.4056. Graph of f5(x1, x2) for the two variable case is in Fig. 7.
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Fig.7 f5(x) – Shekel function

The aim of the experiments was to compare the performance of the mentioned PGA
architectures.  The performance has  been measured in  a  standard way using the
convergence rate of the fitness function, which is the graph of the test function values
of  the  currently  best  individual  in  the  entire  PGA  (“best  so  far”  from  all
subpopulations). In all graphs this value is labelled as “F(x)”. In our case the F(x) is to
be minimized. Each graph represents the mean value of 30 PGA runs.

In figures 8 to 12 all  PGA types (C0, C1,  C2,  F0,  F1,  F2,  F3) and the SGA are
compared on minimization of functions f1  to f5.  The convergence rate of Schwefel
function (f1) minimization is similar for all PGA types expect F2 and F0. F2 is the most
successful type for this relative simple problem. For F0 the convergence rate is very
slow. Expect the f1 all other test cases are non-smooth functions. Here in general the
algorithm types with re-initialization (C1, C2, F1, F2, F3) are more successful, than
types without re-initialization (C0, F0, SGA). This is evident in case of the highly non-
smooth Three Holes function. The performance of the type F2 is slower, than of other
types, which is probably caused by a higher selective pressure of this algorithm in
comparison with other (expect SGA). The most successful types are F3, C1 and C2. C1
and C2 have a high measure of gene diversity of the population, thank relatively
isolated  subpopulations  and  the  use  of  re-initialization.  In  the  C-PGA  the  more
powerful re-initialization method is the Rc2 method. The most powerful PGA type for
test functions f1 to f5 is the F3 type, which is a combination of a fine-grained PGA with
re-initialization and a simple GA with a small population with 20 individuals. In the F-
PGA there is a sufficient diversity measure for new search directions generating and
the simple GA “finalize the evolution” and finds the best solution
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Fig. 8 Comparison for test function f1

Fig. 9 Comparison for test function f2

Fig. 10 Comparison for test function f3
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Fig. 11 Comparison for test function f4

Fig. 12 Comparison for test function f5

Conclusion

Conclusion from experiments obtained by minimizing the test functions f1 to f5, but
also other non-smooth multi-modal functions and some complex practical optimization
problems  are  as  follows.  The  PGA  or  even  parallel  evolutionary  algorithms  can
increase the gene diversity in the population. An effective means of diversity increase
is also the population re-initialization. This can increase the convergence rate of the
PGA and avoid the premature convergence.

Selection of various coarse-grained or fine-grained PGA architecture types has some
influence on the convergence rate. The fine-grained PGA type F3 and coarse-grained
PGA type  C2 seems to  give  the  best  performance.  PGA’s  can bring  decrease  of
computation time, which is needed to find good (or even the best) solution of complex
problems thanks their architecture and information exchange between subpopulations
or individuals respectively.
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