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The focus of this paper is the implementation of a constrained Model
Predictive Control algorithm using a Multi-Parametric Toolbox (MPT),
which  is  a  free  MATLAB  toolbox  for  design,  analysis  and
implementation of optimal controllers for constrained linear, nonlinear
and hybrid  systems.  In  this  paper,  we  show how to  move  all  the

computations  necessary  for  the  implementation  of  MPC  offline  by  using  multi-
parametric approach, while preserving all  its other characteristics. In the end we
demonstrate these methods with designing an optimal controller for some examples.

1. Introduction

Linear  systems  with  input,  output,  or  state  constraints  are  probably  the  most
important class of  systems in practice and the most studied as well.  Although, a
variety of control design methods have been developed for linear systems, the most
popular  control  approach for  linear  systems with  constraints  is  model  predictive
control or simply MPC which has become the standard for constrained multivariable
control problems in the process industries. Nowadays, MPC approach can be found in
a wide variety of applications and this is something that would have been impossible
without the development of new, more effective optimizations algorithms.

The idea behind MPC is to start with a model of the open-loop process that explains
the dynamical relations among system’s variables (command inputs, internal states
and measured outputs). Then, constraint specifications on system variables are added,
such as input limitations (typically due to actuator saturation) and desired ranges
where states and outputs should remain. Desired performance specifications complete
the control problem setup and are expressed through different weights on tracking
errors and actuator efforts (as in classical linear quadratic regulation). The rest of the
MPC design is automatic.

First, an optimal control problem based on the given model, constraints, and weights,
is constructed and translated into an equivalent optimization problem, which depends
on  the  initial  state  and  reference  signals.  Then,  at  each  sampling  time,  the
measurements of the current output (state) of the system are retrieved and an open-
loop  optimal  control  problem is  solved  over  a  finite  time  horizon  to  obtain  the
sequence of future control values. The first value of the sequence is then obtained and

POSTERUS.sk - 1 / 15 -

http://www.posterus.sk/
http://www.posterus.sk/?p=16117
http://www.posterus.sk/?p=16117
http://www.posterus.sk/elektrotechnika
http://www.posterus.sk/studentskeprace


2

the procedure is repeated starting from the new state and over a shifted horizon,
leading to a moving horizon policy.

For this reason the approach is  also called the receding horizon philosophy. The
standard on-line solution at each sampling time is not suitable for fast systems, so
there has been found a way how to solve the optimization problem explicitly off-line
(Bemporad et al., 1999; Borrelli et al., 2001). The explicit solutions to constrained
MPC problem increase the potential applications areas for using MPC approach. The
Multi  Parametric  Toolbox  (MPT)  (Kvasnica  et  al.,  2004)  provides  the  solvers  for
computing  the  explicit  optimal  feedback  control  laws  for  constrained  linear  and
piecewise affine systems.

The paper is organized as follows: firstly, the basics of MPC are reviewed to derive the
quadratic program which needs to be solved to determine the optimal control action.
Next, the multiparametric quadratic programming problem is studied and it is shown
that the optimal solution is a piecewise affine function of the state. We analyze its
properties and present an efficient algorithm to solve it. The paper concludes with
some illustrative examples.

2. Unconstrained optimal control

Consider the problem of regulating the discrete-time system (1) to the origin.

(1)

where x(k)єℝn  is the state vector at time k, u(k)єℝm  is the vector of manipulated
variables to  be determined by the controller  and y(k)єℝp  is  the vector  of  output
variables. The desired objective is to optimize the performance by minimizing the
infinite horizon quadratic cost

(2a)
(2b)
(2c)
(2d)

where xkєℝn denotes the predicted state vector at time t+k obtained by applying to (1)
the first k samples of the input sequence u0,…,u∞, starting from x0=x(t); ukєℝm and
ykєℝp are the input and output vector, and the pair (A, B) is stabilizable. The tuning
parameters are the symmetric matrices Q≽0 (positive semidefinite) and R≻0 (positive
definite) corresponding to weights on state and input. It is also assumed that the pair
(√Q,  A)  is  detectable.  When  no  constraints  are  considered,  the  infinite  horizon
objective (2) could be minimized by the time-invariant state feedback

(3)

where the matrix K  is given by the solution of the discrete-time algebraic Riccati
equation (DARE)
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(4)
(5)

With this control law (3) the optimal cost function is given by

(6)

By the closed-loop uk=Kxk we obtained the time invariant linear quadratic regulator
(LQR) stabilizing the system for arbitrary symmetric Q and R.Consider now the finite
horizon quadratic cost in the form

(7)

where the term xN
T QN xN is known as the terminal cost function. It is well known that

the solution of standard unconstrained finite time optimal control problem is a time
varying state feedback control law

(8)

One possibility is to choose K=0 and QN as the solution of the discrete Lyapunov
equation

(9)

with P=QN. This is only meaningful when the system is open-loop stable. With QN

obtained from the Lyapunov equation, J*(U, x) measures the settling cost of the system
from the present time to infinity under the assumption that the control is turned off
after  N steps.  Alternative  approach is  based on Bellman optimality  principle:  by
solving the problem for all initial states we obtain the solution of the unconstrained
infinite-horizon linear  quadratic  regulation (LQR) problem with weights  Q  and R
(Bemporad et al., 2002)

(10)

where the matrix Pk=Pk
T≥0 are obtained recursively by the algorithm

(11)

with  the  terminal  condition  P(N)=QN  and the  optimal  cost  is  given by  J(x(0))  =
xT(0)P0x(0). This choice of K implies that after N time steps the control is switched to
the unconstrained LQR.

3. Constrained optimal control

Consider now the finite horizon quadratic cost in the form (7) while fulfilling the
constraints

(12)
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at all time instants k≥0. Since the constraints considered are expressed by linear
inequalities,  the  feasible  set  is  a  polyhedral  set.  An  optimal  input  satisfying  the
constraints is guaranteed to exist for any initial state inside the feasible set. We can
now formally  state  the  constrained finite  horizon optimization problem (MPC)  as
follows

(13a)
(13b)
(13c)
(13d)
(13e)
(13f)
(13g)

where Q and R are symmetric weighting matrices and N is the prediction horizon.
This problem is solved repetitively at each time k for the current measurements xk
and the vector of predicted state variables at time k, obtained by applying the input
sequence uk,…,uN-1 to model (1) starting from the state x(0). For ensure the feedback
loop of the control system the MPC control law is characterized by using a control
strategy called moving (receding) horizon (RHC): At time k the optimal solution to
problem (13) is computed:

(14)

and only the first sample from the sequence is applied to the system u(k) = uk*, while
the remaining optimal inputs are discarded and a new optimal control problem is
solved at time k+1, based on the new state x(k+1). By this approach the feedback loop
of the controlled system is ensured.

MPC Computation

By substituting recursive expression of the state equation

(15)

in the cost function that derives to least squares (LS) problem

(16a)
(16b)

where the optimization vector U = [u0
T,…, uN-1

T]T ∈ ℝmN, H=HT≻0 and matrices H, F, Y,
G, W, E are obtained from Q, R, QN and (15). The part involving Y can be removed,
since it does not depend on U. The task of finding optimal control minimizing defined
criterion represents dynamic optimization and in case without any constraints it has
an analytical solution in the form

(17)
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The optimal solution to the optimization problem with constraints (16) relies on a
linear dynamic model of the system. This is usually expressed as a quadratic (QP) or
linear  program (LP),  for  which  a  variety  of  efficient  active-set  and interior-point
solvers are available. Because the problem depends on the current state x(t),  the
implementation of MPC requires the on-line solution of a QP at each time step. To
obtain  a  feedback  character  of  control  the  receding  horizon  method  (RHC)  is
introduced, which however brings the uncertainty into the problem whether the QP
problem will be always feasible. To avoid this doubt it has been shown (Rawlings and
Muske, 1993) that it is possible to optimize the performance over the infinite horizon
with a finite number of optimization variables according to a so-called dual-mode
approach. The cost function is considered as composed by two parts:

(18)

where N<∞ corresponds to a chosen horizon. Therefore, in the first part we try to find
a solution using quadratic programming (QP) and the control inputs in the second part
are given by the LQR problem without constraints. Therefore from the LQ theory we
obtain

(19)

and for P=QN we use the equations (3)-(5). That means if we ensure satisfying of all
constraints for k≥N, we obtain the infinite horizon controller. This can be done by
defining an invariant set around the origin, and constrain the terminal state xN to lie in
that set, which satisfies following conditions:

●

●

while the invariant set is a polytope, so there is a possibility to put it into constraints.

3.1 Stability and Feasibility of MPC

Several  authors  have  addressed  the  problem of  guaranteeing  at  each  time  step
feasibility of the optimization problem associated with MPC. If only input constraints
are present, there is no feasibility issue at all (u=0 is always feasible). On the other
hand,  in  the presence of  output  constraints,  the MPC problem (13)  may become
infeasible, even in the absence of disturbances.

One possibility  is  to  soften the  output  constraints  and to  penalize  the  violations
(Rawlings and Muske, 1993). In the case of hard output constraints, it was proved that
feasibility (as well as stability) is guaranteed by setting N=∞, or alternatively xN=0.
Setting N=∞ leads to an optimization problem with an infinite number of constraints
that is impossible to handle. On the other hand the constraint on the terminal state is
undesirable,  as  it  might  severely  perturb  the  input  trajectory  from  optimizing
performance, especially on short horizons. By using arguments from maximal output
admissible set theory, Gilbert and Tan (Gilbert and Tan, 1991) proved that if the set of
feasible state+input vectors is bounded and also contains the origin in its interior, a
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finite horizon Nc is sufficient for ensuring feasibility.

In general, stability is a complex function of the various tuning parameters N, P, Q,
and R. For applications it is most useful to impose some conditions on N and P so that
stability is guaranteed for all nonsingular Q and R, and leave Q and R as free tuning
parameters  for  performance.  In  some  cases  the  optimization  problem  (13)  is
augmented with the additional constraint which explicitly forces the state vector to
reach an invariant set at the end of the prediction horizon. There is also a possibility
to guarantee closed-loop stability by suitable weighting of P over xN in (13).

3.2 Explicit Solution via Multi-Parametric Quadratic Programming

Although efficient QP solvers based on active-set methods or interior point methods
are available, computing the input u(t) demands significant on-line computation effort.
For this reason, the application of MPC has been limited to “slow” and/or “small”
processes. In order to speed up the task of obtaining u*0(x(t)) for a given value of the
measurements x(t), it is nowadays a standard practice to pre-compute the optimal
solution for all  possible initial  conditions x(t)  by solving problem (13) as a multi-
parametric quadratic program (mp-QP) or a multi-parametric linear program (mp-LP).
This  section  describes  how  to  obtain  such  a  optimal  solution  using  parametric
programming approach.

Consider now the constrained finite time optimal control problem (CFTOC) in the form
(13) augmented with additional condition xN∊Ω⊆Rn, where Ω is a polyhedral terminal
set. We also assume (A, B) is controllable, (A, √Q) is observable and the final cost
matrix QN≻0 is the solution of the associated algebraic Riccati equation. Applying
previous techniques we obtain the problem rewritten in the form

(20a)
(20b)

To obtain the explicit solution of the control problem we need to transform the QP
problem (20)  into  a  multi-parametric  programming problem by  defining  auxiliary
variable

(21)

Thus we obtain optimization problem for variable z in the following form

(22a)
(22b)

where S=E+GH-1FT. The optimal solution is denoted U* = (uk
T, uk+1

T ,…, uN-1
T )T and the

control input is chosen according to the receding horizon policy (RHC). The optimizer
u* is a function of the initial state x(t) and it can be computed in two ways:

if x(0) is fixed, solving the QP on-line at each sampling instance; to obtain a feedback●

control law, number of N open-loop QP must be solved and constitute the feedback form
u(k) = Kk x(k)
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solving problem off-line to obtain the optimizer u*(x) as an explicit function of all possible●

values of x which satisfy (22b). This leads to solving a multi-parametric Quadratic
Program (mp-QP). The advantage of such a solution concept becomes prominent in
situations where the optimization problem (22a) needs to be solved many times for
different values of x. If the explicit representation of the optimizer is obtained,
calculating u*(x) for a given value of x reduces to simple function evaluation, which as
will be illustrated later, can be performed much faster compared to solving the
corresponding QP program every time for a new value of x. To obtain an explicit
representation of the optimizer we apply the Karush-Kuhn-Tucker (KKT) optimality
conditions (Bemporad et al., 2002):

(23a)
(23b)
(23c)
(23d)

where nc denotes the number of constraints (also the number of rows in matrix W)
and λ is the vector of Lagrange Multipliers. The λj

*≥0 gives the active constraints (Gjz*

− Wj − Sjx0) = 0 and the λj
*=0 determines the inactive constraints (Gjz* − Wj − Sjx0) <

0. One can pick some feasible x0 and solve the QP to calculate the optimal z*, λ*. The
concept of active constraints is instrumental to characterize the continuous piecewise
linear (PWL) solution. An inequality constraint is said to be active for some x if it holds
with equality at the optimum. Substituting these solutions to the KKT conditions for
the active constraints

(24a)
(24b)

and subsequently expressing z*, λ* from the equations, since H has full rank we obtain

(25)
(26)

and the optimal solution in the form of affine function of the initial condition x0

(27a)

(27b)

Finally, we can substitute back for z from (27) into (21) and we obtain

(28)

where
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(29)

Generally speaking the optimal control is affine function of the initial condition x0 in
some neighborhood of the
initial condition. By substitution of z*, λ* into the inequalities (23c)-(23d)

(30a)

(30b)

we obtain a polyhedral critical region CR0 = {x0 | Hx0 ≤ k}, where

(31a)

(31a)

corresponding to the given set of active constraints (see Fig. 1 (left)). A polyhedron is
a convex set expressed as the intersection of a finite number of closed half-spaces
representing the largest  set  of  parameters x such that the combination of  active
constraints  at  the minimize is  optimal.  In the next  step a new x0  is  picked in a
neighborhood direction and calculated the new polyhedron (Fig. 1 (right)) until the
whole space is partitioned.

Fig. 1: State space exploration strategy

The recursive algorithm of (Bemporad et al.,  2002) can be briefly summarized as
follows:  Solve an LP to find a feasible parameter x0∈X, where X is  the range of
parameters for which the mp-QP is to be solved. Solve the QP (22) with x=x0, to find
the optimal active set for x0, and then use (27)-(31) to characterize the solution and
critical  region  CR0  corresponding  to  set  of  active  constraints.  Then  divide  the
parameter space as in Fig. 1 by reversing one by one the hyperplanes defining the
critical region. Iteratively subdivide each new region Ri in a similar way as was done
with X.

Therefore, we moved computationally demanding numerical optimization to offline
computation, while the online implementation (control action computation) is reduced
to a simple set-membership test (identification of region CRi containing current state
x(t) and evaluation of a linear function. There are various methods adopted to find the
polyhedral region. The simplest algorithm is binary tree approach, which constructs
and evaluates a binary tree (Fig. 2), which allows for faster region identification.

The basic idea is to hierarchically organize the controller regions into a tree structure

POSTERUS.sk - 8 / 15 -

http://www.posterus.sk/wp-content/uploads/p16117_01_obr01.png


9

where, at level of the tree, the number of regions to consider is decreased by a factor
of two. The tree is constructed iteratively: at each iteration an optimal separating
hyperplane hix(t)≤ki is selected such that the set of all regions processed at the i-th
iteration is divided into two smaller subsets. The exploration of a given tree branch
stops when no further subdivision can be achieved. In such a case a leaf node is
created which points to the region which contains x(t). The resulting tree is then
composed of the set of separating hyperplanes linked to the actual regions through a
set of pointers.

Fig. 2: Binary search tree construction illustration

Controller Complexity Reduction

The limiting  factor  to  apply  MPC is  the  amount  of  computational  load  involved.
Explicit controller complexity can be reduced in a number of ways:

Using move blocking – reduction of the degrees of freedom by fixing the input or its●

derivatives to be constant over several time-steps. MPT toolbox can handle a number of
different move blocking strategies, but unfortunately these are only applicable to LTI
systems with quadratic cost formulation
The choice of penalties in the optimization problem will result in simpler solution (higher●

penalty on the control action results in fewer regions)
Simplification of explicit solution. MPT toolbox is able to simplify explicit controllers by●

merging regions which contain the same control law.

One of the most useful methods in the optimal region merging (ORM) (Geyer et al.,
2008). It should be noted that it is a frequent case in parametric MPC that there are
multiple regions of the table in which the expression for u* is the same. Thus the idea
of ORM is to merge the regions which share the same expression for the optimizer
into larger convex objects.

3.3 Reference Tracking MPC Problem

The basic MPC problem (13) and the corresponding mp-QP formulation (22) can be
extended to reference tracking problem. The output, instead of being regulated to the
origin, is required to either asymptotically converge to a constant reference value or
follow a reference signal that may vary in time. In either case, the objective is to
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minimize the error between the system output y(t) and the reference signal yref ∈ Rp,
which is given by the problem specifications and is a function of time. The general
MPC formulation to treat the reference tracking problem is in the form:

(32a)
(32b)
(32c)
(32d)
(32e)
(32f)
(32g)
(32h)

Thus, the augmented state variable is in the form

(33)

where U = {Δuk,…, Δuk+N–1}, yref = { yref,k,…,yref,k+N}, and Δu∈Rm represent the control
increments that act as correcting terms in the input to force the output to track the
reference signal. The equation uk = uk–1 + Δuk corresponds to adding an integrator in
the control loop. The reference tracking MPC (32) can be formulated into an mp-QP
problem, just like the general MPC problem (13). By taking these extra parameters
into account and repeating the procedure in Sections 3 and 3.2, we can transform the
tracking problem (32) into

(34a)
(34b)

and into the mp-QP problem

(35a)
(35b)

where z = U + H-1 FT [xk uk-1 yref]T and S = E + GH-1 FT. The solution of (35) U is a
linear, piecewise affine function U(xk, uk–1, yref) of xk, uk–1, yref defined over a number of
regions CR0, where this solution is valid. The reference tracking MPC is implemented
by applying the following control: uk = uk–1 + Δuk(xk, uk–1, yref), where Δuk(xk, uk–1, yref) is
the first component of the vector U(xk, uk–1, yref).

4. MPC design via multi-parametric toolbox

The Multi-Parametric Toolbox (MPT) for Matlab developed by (Kvasnica et al., 2004) is
a freely download-able tool that simplifies the design, analysis and deployment of
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optimal controllers for constrained linear, nonlinear and hybrid systems. Efficiency of
the  code  is  guaranteed  by  the  extensive  library  of  algorithms  from the  field  of
computational geometry and multi-parametric optimization. To calculate the explicit
controller the MPT toolbox has interfaces to efficient commercial solvers such as for
example CPLEX, NAG. It also provides a number of algorithms for computing with
polytopic sets and the functions for their visualization. The visualization is helpful
namely  by  analysis  of  designed  MPC.  We  demonstrate  the  controller  design
capabilities of the toolbox with some examples in the following section.

4.1 Numerical Example 1: Discrete Dynamical System

Consider a discrete-time double integrator

which is subject to constraints −5 ≤ x ≤ 5, and −1 ≤ u ≤ 1. We consider the MPC
problem with prediction horizon N = 7, quadratic norm and weighting matrices Q =
diag(1, 0) and R = 1. For the double integrator example the mp-QP problem (22) has
been solved using the MPT toolbox and constructed explicit representation of UN in
the form of following PWA function was computed in just 2 seconds, defined over 7
polytopic regions, along with the piecewise quadratic (PWQ) function J*(x):

The simulation results of the closed-loop system indicating the evolution of the states
and the input for initial state [3, 1]T are depicted on the Fig. 3.
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(a) Closed-loop state trajectories

(b) Time response of the input signal

(c) Controller partition with the state trajectory for several initial states
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(d) PWQ optimal cost J*(x)
Fig. 3: Results obtained from the example 1.

4.2 Numerical Example 2: Two-tank System Model

Consider now the system consisting of two liquid storage tanks placed one below the
other. Liquid inflow to the upper tank is governed by a pump, throughput of which is
to be controlled. The liquid in the first tank flows out through an opening to the lower
tank. The state-space representation of the linearized system is in the form:

The control objective is to operate the pump such that the level in the lower tank
reaches  a  given  time  varying  reference  signal,  while  respecting  input  and  state
constraints

The parameters of the MPC problem to be solved are Q = eye(2), Qy = 10, R = 1 and N
= 5. The control problem (20) has been augmented according to section 3.3 and
solved  parametrically  via  MPT  toolbox,  which  provided  the  regions  and  the
corresponding feedback laws. The result of the computation was in this case a lookup
table consisting of 64 regions in the state-space. For comparison, an unconstrained
quadratic MPC based on the same weighting matrices Q, R and QN solving the Riccati
equation  was  constructed.  This  approach  corresponds  to  the  linear  quadratic
regulator  (LQR).  By  using  Matlab-Simulink  we  obtained  the  simulation  results
depicted in the Fig. 4. From the results it can be seen, that explicit MPC observes
defined constraints whereas the LQR controller cannot deal with constraints and leads
the input to the saturation.

POSTERUS.sk - 13 / 15 -

http://www.posterus.sk/wp-content/uploads/p16117_06_obr03d.png


14

(a) Liquid level in the second tank (blue – explicit MPC, brown – LQR)

(b) Input flow
Fig. 4: Closed-loop simulation

5. Conclusion

Conventional  model  predictive  control  (MPC)  implementation  requires  at  each
sampling time the solution of an open-loop optimal control problem with the current
state as the initial condition of the optimization. Formulating the MPC problem as a
multi-parametric programming problem, the online optimization effort can be moved
offline and the optimal control law defined as a piecewise affine (PWA) function with
dependence on the current state. The domain where the PWA function is defined
corresponds to the feasible set which is partitioned into convex regions.

The online computation reduces to simple evaluations of a PWA function, allowing
implementations  on  simple  hardware  and  systems  with  fast  sampling  rates.
Furthermore,  the closed form of  the MPC solutions allows offline analysis  of  the
performance, providing additional insight of the controller behavior. In this paper a
general framework for multiparametric programming and explicit MPC control design
was presented and applied in several examples.
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