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Plants can be modeled with different types of mathematical models. A
plant model which is suitable for control design may be developed by
using  physical  laws  or  by  processing  the  plant  I/O  data  by  using
appropriate identification method. Usually a simple linear model leads
to a simple controller. However, more accurate or exact description of

the plant is nonlinear and/or time varying and this description usually can not be used
for control design.

In many cases, for a given operating point, the complex plant dynamics can be ap-
proximated  by  a  linear  time  invariant  (LTI)  model  with  the  given  structure  and
constant parameters. When the operating point changes, then the parameters has to
be changed for the appropriate approximation of plant dynamics while structure of the
model usually remains unchanged. Therefore, a simple controller designed for the
given operating point is unable to achieve the desired control performance in the
different operating points.

In the Adaptive Control the controller structure consists of a feedback loop and a
controller with adjustable gains. The gains of controller are then changed so that the
control performance requirements are met for different operating points.

Purpose of this work is to demonstrate the design of the Model Reference Adaptive
Control based on MRC problem for a general class of LTI SISO plants by using it to
control a real laboratory plant. Detailed analysis of the presented control schemes and
procedures can be found in Ioannou(1996). In this paper the controlled plant is a small
laboratory DC motor with the auxiliary electronics which provides the connection to
computer and allows to adjust the overall system dynamics.

In this article the electronic adjustment of the system dynamics is set on certain value
and remains unchanged. Pos- sible changes in the dynamics are due to changes in
plant operating point. Input of the plant is the supply voltage from the range ⟨0, 10⟩
[V]. Output is the angular frequency. Information about angular frequency is obtained
using the tachodynamo. Therefore output is in volts from the range ⟨0,10⟩ [V]. For
more detail see Kajan(2007).

2. The plant model
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Consider the two operating points given by plant output values: yOP1 = 3V and yOP2 =
5V . Values of the plant input for this operating points can be found experimentaly.
Then the data for identification are obtained by using an appropriate input step signal
arround the found input values of the plant. It is assumed that in the range yOP ± 0.4V
the plant dynamics does not change. The result of the plant identification in two
operating  points  by  using  AutoregRessive  model  with  eXogenous  variable  (ARX)
method are two transfer functions:

(1)

(2)

This result clearly show that the system parameters vary with changes in operating
point.

3. The MRC problem

The MRC objective is to determine the plant input up so that the plant output yp tracks
the reference model output ym for given reference input r(t). Consider the SISO LTI
plant described by the transfer function

(3)

where kp is the constant with known sign, Rp(s) is the monic polynomial and Zp(s) is a
monic Hurwitz polynomial. The general assumption is that an upper bound of the
degree of Rp(s) and the relative degree are known, but for simplicity let us assume in
the next section that the degree n of Zp(s) and the degree m of Rp(s) are known. The
relative degree is n* = n − m.

The reference  model  describes  the  desired  characteristics  of  the  plant  and it  is
selected by the designer. Consider the reference model in the transfer function form

(4)

where km is the constant and Zm(s), Rm(s) are monic polynomials. Transfer function
Wm(s) is designed to be strictly positive real (SPR).

Consider the control law in the form

(5)

where   i f  ,  otherwise  ,  and  
 are constant prarameters to be designed.   is  an arbitrary monic

Hurwitz polynomial of degree n-1 with Zm(s) as an factor

(6)

In Ioannou(1996) is shown that there exist a parameters  for which the
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closed loop transfer function, consisting (3) and (5), equals to the reference model
transfer function (4).

3.1 Particular case

Instead of considering the general form of the control law (5) and the general plant
model, MRC problem for the plant model in the form

(7)

is solved in this section. In (7) ai,bi are constant. Notice that the transfer function (7)
has the same form as the plant model (1) and (2). The model reference is chosen to
have the same relative degree as the plant

(8)

In this case the control law has the form

(9)

where we use  and . The control law (9) can be written in the
form

(10)

The closed loop transfer function is obtained by substituing (10) to (7), then:

(11)

The matching equation is Gc(s) = Wm(s). Choosing

(12)
(13)

the matching equation becomes

(14)

which can be expressed in terms of the matrix algebraic equation by equating the
coefficients of the powers of s on both sides. Then we have
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(15)

In the case when the plant parameters are known the control law (9), with parameters
(12) and (15), solves the MRC problem. This means that the closed loop transfer
function Gc(s) equals to the reference model transfer function Wm(s).

4. State space representation of the closed loop system

The plant (7) can be represented in state space in the form

(16)
(17)

where  is state vector of plant and  are constant matrices with appropriate
dimensions. The control law (9) can be represented in the state space in the form

(18)
(19)
(20)

where  are the control law parameters,  and

. In the case of known plant parameters the parameters of control law are
known: . Including of the auxiliary states  and  to the plant states space
representation leads to following equations

(21)
(22)

where

In this paper we refer to equation (21) and (22) as an augmented plant equations. The
ideal closed loop transfer function is obtained by substituing the control law with
known parameters to the augmented plant equation (21), i.e.,

(23)
(24)
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where , which imlpies that

(25)

This also means, that the reference model can be decribed by the nonminimal state
space representation in the form

(26)
(27)

5. Direct Adaptive law

Because the parameters of the plant changes with the operating point we assume that
they are unknown. Therefore the desired controller parameters  cannot be
calculated from the matching equation. Thus the unknown control law parameters are
replaced  by  the   which  are  the  estimates  of   at  time  t  to  be
generated by an appropriate adaptive law.

Finding of the adaptive law can be viewed as a on-line identification problem of the
unknown constants . The augmented plant (21) can be expressed in terms of

 by adding and substracting the desired input term  to
obtain

(28)

(29)

which is the parametrization of the plant equation in terms of the ideal controller
parameters. Let

(30)
(31)

then the error equation has the form

(32)

(33)

or

(34)

The estimate  of  based on  and  is given by

(35)

where  is estimate of . Because  is considered it follows that
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. Therefore there is no need to form the error estimation model (35), and the
estimation error is simply the tracking error . Substituting for the control law in
(32), we obtain the error equation

(36)
(37)

where , or

(38)

which relates the parameter errors  and  with the tracking
error   through  the  SPR transfer  function.  This  motivates  the  use  of  the  SPR-
Lyapunov design aproach to ensure asymptotic stability of tracking error . Consider
the Lyapunov-like function

(39)

where ,  are the design parameters of adaptive law and 
satisfies the algebraic equation implied by Mayer-Kalman-Yakubovich (MKY) lemma: If

 is SPR, then we can write

(40)
(41)

where . The time derivate  of  along the trajectory of (36) is given by

(42)

The adaptation law results from  requirement. Choosing

(43)

(44)

where

 and  is used, leads to

(45)

Because ideal parameters  are considered to be constant (or quasistationary)
we have  and . Further analysis shows, see Ioannou(1996), that all the
signals int the closed-loop system are bounded, and the tracking error goes to zero as
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.

6. Simulation and experimental results

For simulation the nominal transfer function is used instead of the real plant. The
parameters  of  the  nominal  transfer  function are  the average values  of  identified
parameters of the transfer functions (1) and (2). The nominal transfer function is

(46)

The reference model transfer function is considered in the form

(47)

Now, equations (12), (13) and (15) are used to calculate the ideal controller parameter
for the nominal case

These  values  serves  for  better  estimation  of  the  initial  values  of  control  law
parameters. Let the initial controller parameters to be close to these values, i.e.,

The reference model is chosen to have slower dynamics as the nominal plant model
(46). Reason for this is an effort to avoid the control output to reach its constraints,
which allows to the intended demonstration to be lucid.

For the same reason the selected reference signal r contains only low frequencies. The
reference signal slowly raise up to the area of operating point 2 (r = 5 ± 0.4V ) where
the real plant transfer function is close to (2). Then the value of r slowly moves to the
area of operating point 1 (r = 3 ± 0.4V ) and finally it again raise up to the operating
point 1. Whole sequence takes 90 seconds.

The process of adaptation is expected in the real experiment because the real plant
parameter values changes with operating point. However, in simulation is used a plant
whith parameters which does not depend on operating point. Therefore significant
process of adaptation is expected only at the begining of simulation experiment.

Choosing of  the so  called adaptation gains   and  has  influence on speed and
oscillations in adapted parameter convergence. The larger the  and  are, the faster
the convergence is, but excessive increase in these gains leads to oscillations in the
adapted parameter response.

Let choose  and  for first simulation experiment. The result is in the
Fig.\ref{First  simulation  experiment}.  There  are  significant  oscilations  in  the
responses caused by excessive value of adaptation gains. Therefore these adaptation
gain values are not suitable for real experiment. A good set of the adaptation gain
values was found to be
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(48)

These values has been obtained by using the trail  and error method, performing
appro-  priate  number  of  experiments  with  the  real  plant.  The  result  with  these
adaptation gains is in the Fig.2. Simulation with adaptation gains (48) has been also
performed. The result of this simulation is in the Fig.3.

7. Conclusion

This work presents an application of the clasical Model Reference Adaptive Control.
First  the  identification  of  the  controled  plant  is  performed  in  the  two  different
operating points. The two identified transfer functions differs in the parameter values.
It can be considered that the simple controller which is designed to meet the desired
control quality in one operating point can not satisfy the quality requirements in the
second
operating point.

This can bee seen as a motivation to choose more sophisticated control design. One of
the posibilities is  Adaptive control.  Therefore,  the whole MRAC alghoritm for the
considered particular case is derived. The matching equation which solves the MRC
problem is expressed in the form that allows to immediately compute the controller
parameters if the plant and reference model parameters are known.

Figure 1: Result of the first simulation experiment. There are significant oscilations in
the responses caused by excessive value of adaptation gains.
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Figure 2: Result of experiment with the real plant

Figure 3: Simulation experiment with the same adjustment of control system as in real
experiment

The uncommon state space represntation of the control law is used, where matrix D is
introduced. This form of control law together with the introduced augmented plant
makes  derivation  of  adaptation  law similar  to  case  when  the  state  controller  is
considered. Then it is easyer to see that the derivation procedure is same as in the
common simple scalar examples usually described in textbooks (see References).

The use of the SPR-Lyapunov design is shown in detail in this paper. However the
further  analysis  of  the  obtained results  is  considered to  be  out  of  scope of  this
demonstration. Finally, the performance of the designed direct MRAC alghoritm is
confirmed by simulation experiments and also by experimental results.
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